Behaviour of Radon-Nikodym cocycles of one-ended measure class preserving transformation

Sasha Bell \& Owen Rodgers

McGill University

Descriptive Dynamics and Combinatorics Seminar

Joint work with Tasmin Chu

Overview

(1) Preliminaries
(2) Derivation of the cocycle
(3) Example: Oscillating cocycles
(9) General periodic measures
(6) Example: Cocycle going to zero nonsummably

Preliminaries

Our main space of interest is the Cantor space, denoted $2^{\mathbb{N}}$, and we will only consider product measures $\mu=\prod_{n \in \mathbb{N}} \mu_{n}$ where μ_{n} is a probability measure on $\{0,1\}$. We call two product measures μ, ν equivalent, denoted $\mu \sim$, if $\mu(A)=0 \Longleftrightarrow \nu(A)=0$ for all measurable $A \subseteq 2^{\mathbb{N}}$.

A function $T:\left(2^{\mathbb{N}}, \mu\right) \rightarrow\left(2^{\mathbb{N}}, \mu\right)$ induces an equivalence relation, the orbit equivalence relation, denoted \mathbb{E}_{T}, whose classes are the orbits of T.

We call a function T measure class preserving (also null-preserving, quasi-pmp), if for any μ-measurable $A \subset 2^{\mathbb{N}}$, $\mu(A)=0 \Longleftrightarrow \mu\left(T^{-1}(A)=0\right)$. We moreover call $\mu \mathbb{E}_{T^{-q}}$ quasi-invariant if the saturation $[A]_{\mathbb{E}_{T}}$ is null whenever A is null.

Radon-Nikodym Cocycle

If μ is $\mathbb{E}_{\boldsymbol{T}}$-quasi-invariant, then $\mathbb{E}_{\boldsymbol{T}}$ admits an almost-everywhere unique Radon-Nikoydm cocycle $\mathfrak{w}: \mathbb{E}_{T} \rightarrow \mathbb{R}^{+}$. [KM04]

For μ-a.e $x \mathbb{E}_{T} y \mathbb{E}_{T} z$, we have $\mathfrak{w}^{x}(z)=\mathfrak{w}^{x}(y) \cdot \mathfrak{w}^{y}(z)$.
This cocycle measures the relative weights of points in equivalence classes, that is, for $x \mathbb{E}_{T} y, \mathfrak{w}^{x}(y)$ can be thought of the "weight" that x assigns to y. So, for a Borel set A, we have

$$
\mu(T(A))=\int_{A} \mathfrak{w}^{x}(T(x)) d \mu(x)
$$

The Bit Flip Transformation

To define the function of interest, we restrict to the subset of $\mathcal{S} \subseteq 2^{\mathbb{N}}$ where every sequence has infinitely many 1 s . We define the map $\tau: S \rightarrow S$ as the flip of the first 1 in a sequence to a 0 . Note that τ induces the eventual equivalence \mathbb{E}_{0} as an orbit equivalence relation. E.g.

$$
\begin{aligned}
\tau(010101 \ldots) & =000101 \ldots \\
\tau(10001 \ldots) & =00001 \ldots
\end{aligned}
$$

τ has countably many inverse functions $\left(\tau_{k}^{-1}\right)_{k \geq 1}$, where τ_{k}^{-1} flips the 0 at the k-th index to a 1 .

Graphing of the Bit Flip

$$
\begin{aligned}
& x=01011 \ldots . \\
& \tau(x)=00011 \ldots \\
& \tau^{2}(x)=00001 \ldots \\
& \tau^{3}(x)=00000 \ldots
\end{aligned}
$$

Measure Class Preserving?

We are interested in the Radon-Nikodym cocycle of τ, but we need to first find out which measures μ are \mathbb{E}_{0}-quasi-invariant.

For this, it is enough to check that τ and all of it's right inverses τ_{k}^{-1} are measure class preserving

Indeed, since τ flips one bit, in order to preserve null sets, we require that the measure of that bit is nontrivial. Thus we have that any product measure μ with nontrivial marginal measures μ_{n} are \mathbb{E}_{0}-quasi-invariant.

Kakutani's characterization

For other functions we can check they are measure class preserving by comparinng them to their pushforward measures using Kakutani's characterization of equivalent product measures [Kak48],

Theorem (Kakutani, 1948)

If μ, ν are product measures on $2^{\mathbb{N}}$ for which $\mu_{n} \sim \nu_{n}$ for each $n \in \mathbb{N}$. Then

$$
\mu \sim \nu \Longleftrightarrow \sum_{n \in \mathbb{N}}\left(\sqrt{\mu_{n}(0)}-\sqrt{\nu_{n}(0)}\right)^{2}+\left(\sqrt{\mu_{n}(1)}-\sqrt{\nu_{n}(1)}\right)^{2}<\infty
$$

Computing the Cocycle

Using a convenient cylinder set, we compute the cocycle associated to the transformation, namely $A=[00 \ldots 1]_{0}^{n}$. Then we have

$$
\frac{d \tau_{*} \mu}{d \mu}(A)=\frac{[00 \ldots 0]_{0}^{n}}{[00 \ldots 1]_{0}^{n}}=\frac{\mu_{n}(0)}{\mu_{n}(1)}
$$

So for any $k \in \mathbb{N}$,

$$
\mathfrak{w}^{\times}\left(\tau^{k}(x)\right)=\prod_{i=0}^{k} \frac{\mu_{n_{i}}(0)}{\mu_{n_{i}}(1)}
$$

where the sequence $\left(n_{i}\right)_{i \geq 1}$ is the positions of the ones in x.

Example of the Cocycle

Let $x:=010010001000 \ldots$. Then x has 1 s at indices $2,5,9$, etc., so

$$
\begin{gathered}
\mathfrak{w}(x, \tau(x))=\frac{\mu_{2}(0)}{\mu_{2}(1)} \\
\mathfrak{w}\left(x, \tau^{2}(x)\right)=\frac{\mu_{2}(0)}{\mu_{2}(1)} \cdot \frac{\mu_{5}(0)}{\mu_{5}(1)}
\end{gathered}
$$

and

$$
\mathfrak{w}\left(x, \tau^{3}(x)\right)=\frac{\mu_{2}(0)}{\mu_{2}(1)} \cdot \frac{\mu_{5}(0)}{\mu_{5}(1)} \cdot \frac{\mu_{9}(0)}{\mu_{9}(1)} .
$$

Question

What is

$$
\lim _{k \rightarrow \infty} \mathfrak{w}^{x}\left(\tau^{k}(x)\right) ?
$$

I.e. What is the behaviour of the cocycle as we travel towards the forward end of the graphing

Example 1: Constant Cocycle

If

$$
\mu_{n}(0)=\mu_{n}(1)=\frac{1}{2}
$$

for all n, then

$$
\frac{\mu_{n}(0)}{\mu_{n}(1)}=1
$$

for all n, so

$$
\mathfrak{w}\left(x, \tau^{k}(x)\right)=\prod_{i=0}^{k} \frac{\mu_{n_{i}}(0)}{\mu_{n_{i}}(1)}=1
$$

for all x, k.

Example 2: Vanishing Cocycle

If

$$
\mu_{n}(0)=\frac{1}{3}, \mu_{n}(1)=\frac{2}{3}
$$

for all n, then

$$
\frac{\mu_{n}(0)}{\mu_{n}(1)}=\frac{1}{2}
$$

for all n, so

$$
\mathfrak{w}\left(x, \tau^{k}(x)\right)=\prod_{i=0}^{k} \frac{\mu_{n_{i}}(0)}{\mu_{n_{i}}(1)}=\frac{1}{2^{k}}
$$

for all x, k, so

$$
\lim _{k \rightarrow \infty} \mathfrak{w}\left(x, \tau^{k}(x)\right)=0
$$

Example 3: Exploding Cocycle

If we tweak the measures from example 2, i.e.

$$
\mu_{n}(0)=\frac{2}{3}, \mu_{n}(1)=\frac{1}{3}
$$

for all n, then

$$
\frac{\mu_{n}(0)}{\mu_{n}(1)}=2
$$

for all n, so

$$
\mathfrak{w}\left(x, \tau^{k}(x)\right)=\prod_{i=0}^{k} \frac{\mu_{n_{i}}(0)}{\mu_{n_{i}}(1)}=2^{k}
$$

for all x, k, so

$$
\lim _{k \rightarrow \infty} \mathfrak{w}\left(x, \tau^{k}(x)\right)=\infty
$$

Question

Does the cocycle ever oscillate?

Oscillating Cocycle

$$
\mathfrak{w}^{x}\left(\tau^{k}(x)\right)=\prod_{i=0}^{k} \frac{\mu_{n_{i}}(0)}{\mu_{n_{i}}(1)}
$$

We need the $\mu_{n} s$ to oscillate, in order to have some $\frac{\mu_{n}(0)}{\mu_{n}(1)}$ greater than 1 , and some less than 1.
Since

$$
\frac{\mu_{n}(0)}{\mu_{n}(1)}<1 \leftrightarrow \mu_{n}(1)>\frac{1}{2}
$$

the cocycle will be biased towards smaller terms.

First Attempt

For even n, let

$$
\mu_{n}(0)=\frac{1}{3}, \mu_{n}(1)=\frac{2}{3} .
$$

For odd n, let

$$
\mu_{n}(0)=\frac{2}{3}, \mu_{n}(1)=\frac{1}{3} .
$$

Then

$$
\frac{\mu_{n}(0)}{\mu_{n}(1)}= \begin{cases}\frac{1}{2}, & n \text { even } \\ 2, & n \text { odd }\end{cases}
$$

But we are twice as likely to have $x_{n}=1$ when n is even, than when n is odd, so

$$
\mathfrak{w}^{x}\left(\tau^{k}(x)\right) \rightarrow 0
$$

How can we correct this imbalance?

Second Attempt

Double the frequency of the large terms, since they are half as likely to be factored into the cocycle.
For $n=0 \bmod 3$,

$$
\mu_{n}(0)=\frac{1}{3}, \mu_{n}(1)=\frac{2}{3}
$$

For $n=1,2 \bmod 3$,

$$
\mu_{n}(0)=\frac{2}{3}, \mu_{n}(1)=\frac{1}{3}
$$

This way we have a repeating pattern of measures, where there are more measures of the second form to account for the fact that 1 s will appear with lesser probability in those positions.

Building a Random Walk 1/3

We want to see how the cocycle behaves for a "typical" $x \in 2^{\mathbb{N}}$, so we view $x=\left(x_{n}\right)_{n \geq 1} \sim \mu$ as a random variable.
Let P_{k} be the contribution of x_{k} to the cocycle:

$$
P_{k}=\left\{\begin{array}{l}
\frac{1}{2}, x_{k}=1 \text { and } k \equiv_{3} 0 \\
2, x_{k}=1 \text { and } k \equiv_{3} 1,2 \\
1 \text { if } x_{k}=0
\end{array}\right.
$$

Let

$$
\begin{aligned}
S_{k}:= & \sum_{i \leq k} \log _{2} P_{i}, \text { then } S_{k} \in \mathbb{Z} . \\
& S_{k}-S_{k-1} \in\{-1,0,1\} .
\end{aligned}
$$

Building a Random Walk 2/3

Then

$$
S_{k}=\log \mathfrak{w}^{N_{k}}(x)
$$

where

$$
N_{k}:=\sup \left\{n \leq k: x_{n}=1\right\} .
$$

Let

$$
X_{k}:=S_{3 k}-S_{3(k-1)}
$$

Then

$$
X_{k} \in\{-1,0,1,2\} .
$$

Let $a:=x_{3 k-2} x_{3 k-1} x_{3 k}$. Then

$$
X_{k}=\left\{\begin{array}{l}
2 \text { if } a=110 \\
1 \text { if } a=010,100, \text { or } 111 \\
0 \text { if } a=000,101, \text { or } 011 \\
-1 \text { if } a=001
\end{array}\right.
$$

Building a Random Walk $3 / 3$

Since the marginal measures are periodic with period 3 , the X_{k} s are IID, and

$$
S_{3 k}=\sum_{i=1}^{k} X_{i} .
$$

So $\left(S_{3 k}\right)_{k \geq 1}$ is a random walk.

Chung-Fuchs Theorem

Now that the cocycle has the form of a random walk, we use the following theorem [CF51]:

Theorem (Chung, Fuchs 1951)

For a random walk $S_{k}=\sum_{i=1}^{k} X_{i}$ on \mathbb{R} where X_{i} are iid and are bounded,

- $\mathbb{E}\left[X_{k}\right]=0 \leftrightarrow \lim \sup _{k \rightarrow \infty} S_{k}=\infty$ and $\lim \inf _{k \rightarrow \infty} S_{k}=-\infty \mu$-a.e.
- $\mathbb{E}\left[X_{k}\right]<0 \leftrightarrow \lim _{k \rightarrow \infty} S_{k}=-\infty \mu$-a.e.
- $\mathbb{E}\left[X_{k}\right]>0 \leftrightarrow \lim _{k \rightarrow \infty} S_{k}=\infty \mu$-a.e.

Our $X_{k} s$ have expectation 0 , so the $S_{3 k} s$ will oscillate. Hence, $\log \mathfrak{w}^{k}$ oscillates $\Rightarrow \mathfrak{w}^{k}$ oscillates.

Expectation computation

$$
\begin{gathered}
\left\{\begin{array}{lll}
-1: x_{3 k-2} x_{3 k-1} x_{3 k}=001, & q_{-1} \\
0: 000,101,101, & q_{0} \\
1: 010,100,111, & q_{1} \\
2: 110, & q_{2}
\end{array}\right. \\
\mathbb{E}\left[X_{k}\right]=-q_{-1}+q_{1}+2 q_{2}=-\frac{8}{27}+\frac{6}{27}+2 \frac{1}{27}=0
\end{gathered}
$$

Example 1

For $n=0 \bmod 3$, let

$$
\mu_{n}(0)=\frac{1}{3}, \mu_{n}(1)=\frac{2}{3}
$$

and for $n=1,2 \bmod 3$, let

$$
\mu_{n}(0)=\frac{2}{3}, \mu_{n}(1)=\frac{1}{3} .
$$

Then by the Chung-Fuchs Theorem, the cocycle $\mathfrak{w}^{x}\left(\tau^{k}(x)\right)$ of μ will oscillate μ-a.e.

Questions

Will the cocycle oscillate when...

- μ is defined analogously to the above example, but with period >3 ?
- μ is an arbitrary periodic measure?

Examples 2 to ∞

We can generalize the above example to obtain a family of periodic measures, all of which have oscillating cocycles.
For a fixed $m>2$, define μ as follows:
If $n \equiv 0 \bmod m$, then

$$
\mu_{n}(0)=\frac{1}{m}, \mu_{n}(1)=\frac{m-1}{m}
$$

If $n \equiv 1, \ldots, m-1 \bmod m$, then

$$
\mu_{n}(0)=\frac{m-1}{m}, \mu_{n}(1)=\frac{1}{m}
$$

Examples 2 to ∞ cont'd

Let P_{k} be the contribution of x_{k} to the cocycle:

$$
P_{k}=\left\{\begin{array}{l}
\frac{1}{m-1}, x_{k}=1 \text { and } k \equiv_{m} 0 \\
m-1, x_{k}=1 \text { and } k \equiv_{m} 1,2, \ldots, m-1 \\
1 \text { if } x_{k}=0
\end{array}\right.
$$

Let

$$
S_{k}:=\sum_{i \leq k} \log _{m-1} P_{i}, \text { then } S_{k} \in \mathbb{Z}
$$

Examples 2 to ∞ cont'd

Let

$$
X_{k}:=S_{m k}-S_{m(k-1)}
$$

Then

$$
X_{k} \in\{-1,0,1, \ldots, m-1\} .
$$

Since the marginal measures are periodic with period m, the $X_{k} s$ are IID, so $\left(S_{m k}\right)_{k \geq 1}$ is a random walk.

Examples 2 to ∞ cont'd

We now want to compute

$$
\mathbb{E}\left[X_{k}\right]=-q_{-1}+q_{1}+2 q_{2}+\ldots+(m-1) q_{m-1}
$$

First, notice that $X_{k}=-1$ if and only if

$$
x_{m k}=1 \text { and } x_{m k+1}=\ldots=x_{m k+m-1}=0
$$

so

$$
q_{-1}=\left(\frac{m-1}{m}\right)^{m} .
$$

Continue to get:

$$
q_{i}=\binom{m}{i+1}\left(\frac{1}{m}\right)^{i+1}\left(\frac{m-1}{m}\right)^{m-i-1} .
$$

Examples 2 to ∞ cont'd

So

$$
\begin{gathered}
\mathbb{E}\left[X_{k}\right]=\sum_{j=0}^{m}(j-1)\binom{m}{j}\left(\frac{1}{m}\right)^{j}\left(\frac{m-1}{m}\right)^{m-j} \\
=\sum_{j=0}^{m} j\binom{m}{j}\left(\frac{1}{m}\right)^{j}\left(\frac{m-1}{m}\right)^{m-j}-\sum_{j=0}^{m}\binom{m}{j}\left(\frac{1}{m}\right)^{j}\left(\frac{m-1}{m}\right)^{m-j} \\
=1-\left(\frac{1}{m}+\frac{m-1}{m}\right)^{m}=0
\end{gathered}
$$

by the binomial theorem.
So by the Chung-Fuchs Theorem, for all $m \geq 3$, the product measure μ will have a cocycle with the desired oscillatory behavior μ-a.e.

Classifying Cocycles of Periodic Measures

We can always classify the limit behavior of the cocycle of a periodic measure μ, using the Chung-Fuchs Theorem:

Theorem (Chung, Fuchs 1951)

For a random walk $\left(S_{k}\right)$ on \mathbb{R} with X_{i} that are iid and bounded,

- $\mathbb{E}\left[X_{k}\right]=0 \leftrightarrow \lim \sup _{k \rightarrow \infty} S_{k}=\infty$ and $\liminf \operatorname{inc\infty }_{k \rightarrow} S_{k}=-\infty \mu$-a.e.
- $\mathbb{E}\left[X_{k}\right]<0 \leftrightarrow \lim _{k \rightarrow \infty} S_{k}=-\infty \mu$-a.e.
- $\mathbb{E}\left[X_{k}\right]>0 \leftrightarrow \lim _{k \rightarrow \infty} S_{k}=\infty \mu$-a.e.

Classifying Cocycles of Periodic Measures cont'd

Let μ be an arbitrary measure with periodic marginals of period $T>2$. We construct a random walk in a completely analogous way to the previous examples:

$$
S_{k}:=\sum_{i \leq k} \log P_{i} \text { and } X_{k}:=S_{T k}-S_{T(k-1)}
$$

for $k>0$. Then

$$
\lim _{k \rightarrow \infty} \mathfrak{w}^{k}(x) \begin{cases}\text { oscillates, } & \mathbb{E}\left[X_{1}\right]=0 \\ =0, & \mathbb{E}\left[X_{1}\right]<0 \\ =\infty, & \mathbb{E}\left[X_{1}\right]>0\end{cases}
$$

A nonsummable example

Another question was whether the cocycle ever goes to zero, but in a nonsummable way.

We construct a product measure where this will occur. To do so, first let $\left(n_{k}\right)$ be a sequence defined as $n_{0}=0$ and $n_{k+1}=n_{k}+2^{k \sum_{i \leq k}{ }^{i} \text {. }}$

We define our marginal measures as:

$$
\left\{\begin{array}{l}
n \in\left(n_{k}\right): \mu_{n}(0)=\frac{1}{2^{k}+1}, \mu_{n}(1)=\frac{2^{k}}{2^{k}+1} \\
n \notin\left(n_{k}\right): \mu_{n}(0)=\mu_{n}(1)=\frac{1}{2}
\end{array}\right.
$$

Nonsummable cont.

Now, letting $m_{k}=\sum_{i \leq k} i$, we let
$E_{k}:=\left\{x \in 2^{\mathbb{N}}: x\right.$ has at most $m_{k} 1 \mathrm{~s}$ between indices n_{k} and $\left.n_{k+1}\right\}$.

Notice that if the sequence $\mathfrak{w}^{x}(\tau(x))$ is summable, then $x \in E_{k}$ for infinitely many k.

We can show that $\mu\left(E_{k}\right) \leq \frac{1}{2^{k}}$, so by Borel-Cantelli, the set of all x whose cocycle is summable lies in a null set, hence the cocycle is nonsummable almost everywhere.

Bound calculation

$$
\begin{aligned}
& \mu\left(E_{k}\right)=\frac{1}{2^{2^{k m_{k}}}} \sum_{i=0}^{2^{m_{k}}}\binom{2^{k m_{k}}}{i} \leq \frac{1}{2^{2^{k m_{k}}}} \sum_{i=1}^{2^{m_{k}}} \frac{2^{i k m_{k}}}{i!} \\
& \leq \frac{1}{2^{2^{k m_{k}}}} 2^{m_{k}} 2^{2^{m_{k}} k m_{k}}=2^{m_{k}+2^{m_{k} k m_{k}-2^{k m_{k}}}} \\
& \leq 2^{-k}
\end{aligned}
$$

Acknowledgements

- Professor Anush Tserunyan
- Professor Louigi Addario-Berry

References

E. K. L. Chung and W. H. J. Fuchs, On the distribution of values of sums of random variables, pp. 157-168, 1951.
Shizuo Kakutani, On equivalence of infinite product measures, Annals of Mathematics 49 (1948), no. 1, 214-224.
(A. S. Kechris and B. Miller, Topics in orbit equivalence, vol. 1852, Springer, 2004.

