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Preliminaries

Our main space of interest is the Cantor space, denoted 2N, and we will
only consider product measures µ =

∏
n∈N µn where µn is a probability

measure on {0, 1}. We call two product measures µ, ν equivalent,
denoted µ ∼, if µ(A) = 0 ⇐⇒ ν(A) = 0 for all measurable A ⊆ 2N.

A function T : (2N, µ) → (2N, µ) induces an equivalence relation, the orbit
equivalence relation, denoted ET , whose classes are the orbits of T .

We call a function T measure class preserving (also null-preserving,
quasi-pmp), if for any µ-measurable A ⊂ 2N,
µ(A) = 0 ⇐⇒ µ(T−1(A) = 0). We moreover call µ ET -quasi-invariant
if the saturation [A]ET

is null whenever A is null.
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Radon-Nikodym Cocycle

If µ is ET -quasi-invariant, then ET admits an almost-everywhere unique
Radon-Nikoydm cocycle w : ET → R+. [KM04]

For µ-a.e xET yET z , we have wx(z) = wx(y) ·wy (z).

This cocycle measures the relative weights of points in equivalence classes,
that is, for xET y , w

x(y) can be thought of the “weight” that x assigns to
y . So, for a Borel set A, we have

µ(T (A)) =

∫
A
wx(T (x))dµ(x)
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The Bit Flip Transformation

To define the function of interest, we restrict to the subset of S ⊆ 2N

where every sequence has infinitely many 1s. We define the map
τ : S → S as the flip of the first 1 in a sequence to a 0. Note that τ
induces the eventual equivalence E0 as an orbit equivalence relation.
E.g.

τ(010101...) = 000101...

τ(10001...) = 00001...

τ has countably many inverse functions (τ−1
k )k≥1, where τ−1

k flips the 0 at
the k-th index to a 1.
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Graphing of the Bit Flip
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Measure Class Preserving?

We are interested in the Radon-Nikodym cocycle of τ , but we need to first
find out which measures µ are E0-quasi-invariant.

For this, it is enough to check that τ and all of it’s right inverses τ−1
k are

measure class preserving

Indeed, since τ flips one bit, in order to preserve null sets, we require that
the measure of that bit is nontrivial. Thus we have that any product
measure µ with nontrivial marginal measures µn are E0-quasi-invariant.
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Kakutani’s characterization

For other functions we can check they are measure class preserving by
comparinng them to their pushforward measures using Kakutani’s
characterization of equivalent product measures [Kak48],

Theorem (Kakutani, 1948)

If µ, ν are product measures on 2N for which µn ∼ νn for each n ∈ N. Then

µ ∼ ν ⇐⇒
∑
n∈N

(
√

µn(0)−
√

νn(0))
2 + (

√
µn(1)−

√
νn(1))

2 < ∞
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Computing the Cocycle

Using a convenient cylinder set, we compute the cocycle associated to the
transformation, namely A = [00 . . . 1]n0. Then we have

dτ∗µ

dµ
(A) =

[00 . . . 0]n0
[00 . . . 1]n0

=
µn(0)

µn(1)
.

So for any k ∈ N,

wx(τk(x)) =
k∏

i=0

µni (0)

µni (1)

where the sequence (ni )i≥1 is the positions of the ones in x .
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Example of the Cocycle

Let x := 010010001000.... Then x has 1s at indices 2, 5, 9, etc., so

w(x , τ(x)) =
µ2(0)

µ2(1)
,

w(x , τ2(x)) =
µ2(0)

µ2(1)
· µ5(0)

µ5(1)
,

and

w(x , τ3(x)) =
µ2(0)

µ2(1)
· µ5(0)

µ5(1)
· µ9(0)

µ9(1)
.
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Question

What is
lim
k→∞

wx(τk(x))?

I.e. What is the behaviour of the cocycle as we travel towards the forward
end of the graphing
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Example 1: Constant Cocycle

If

µn(0) = µn(1) =
1

2

for all n, then
µn(0)

µn(1)
= 1

for all n, so

w(x , τk(x)) =
k∏

i=0

µni (0)

µni (1)
= 1

for all x , k.
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Example 2: Vanishing Cocycle

If

µn(0) =
1

3
, µn(1) =

2

3

for all n, then
µn(0)

µn(1)
=

1

2

for all n, so

w(x , τk(x)) =
k∏

i=0

µni (0)

µni (1)
=

1

2k

for all x , k, so
lim
k→∞

w(x , τk(x)) = 0.
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Example 3: Exploding Cocycle

If we tweak the measures from example 2, i.e.

µn(0) =
2

3
, µn(1) =

1

3

for all n, then
µn(0)

µn(1)
= 2

for all n, so

w(x , τk(x)) =
k∏

i=0

µni (0)

µni (1)
= 2k

for all x , k, so
lim
k→∞

w(x , τk(x)) = ∞.
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Question

Does the cocycle ever oscillate?
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Oscillating Cocycle

wx(τk(x)) =
k∏

i=0

µni (0)

µni (1)

We need the µns to oscillate, in order to have some µn(0)
µn(1)

greater than 1,
and some less than 1.
Since

µn(0)

µn(1)
< 1 ↔ µn(1) >

1

2
,

the cocycle will be biased towards smaller terms.
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First Attempt

For even n, let

µn(0) =
1

3
, µn(1) =

2

3
.

For odd n, let

µn(0) =
2

3
, µn(1) =

1

3
.

Then
µn(0)

µn(1)
=

{
1
2 , n even

2, n odd

But we are twice as likely to have xn = 1 when n is even, than when n is
odd, so

wx(τk(x)) → 0.

How can we correct this imbalance?
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Second Attempt

Double the frequency of the large terms, since they are half as likely to be
factored into the cocycle.
For n = 0 mod 3,

µn(0) =
1

3
, µn(1) =

2

3

For n = 1, 2 mod 3,

µn(0) =
2

3
, µn(1) =

1

3

This way we have a repeating pattern of measures, where there are more
measures of the second form to account for the fact that 1s will appear
with lesser probability in those positions.
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Building a Random Walk 1/3

We want to see how the cocycle behaves for a “typical” x ∈ 2N, so we
view x = (xn)n≥1 ∼ µ as a random variable.
Let Pk be the contribution of xk to the cocycle:

Pk =


1
2 , xk = 1 and k ≡3 0

2, xk = 1 and k ≡3 1, 2

1 if xk = 0

Let
Sk :=

∑
i≤k

log2 Pi , then Sk ∈ Z.

Sk − Sk−1 ∈ {−1, 0, 1}.
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Building a Random Walk 2/3

Then
Sk = logwNk (x),

where
Nk := sup{n ≤ k : xn = 1}.

Let
Xk := S3k − S3(k−1).

Then
Xk ∈ {−1, 0, 1, 2}.

Let a := x3k−2x3k−1x3k . Then

Xk =


2 if a = 110

1 if a = 010, 100, or 111

0 if a = 000, 101, or 011

−1 if a = 001
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Building a Random Walk 3/3

Since the marginal measures are periodic with period 3, the Xks are IID,
and

S3k =
k∑

i=1

Xi .

So (S3k)k≥1 is a random walk.
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Chung-Fuchs Theorem

Now that the cocycle has the form of a random walk, we use the following
theorem [CF51]:

Theorem (Chung, Fuchs 1951)

For a random walk Sk =
∑k

i=1 Xi on R where Xi are iid and are bounded,

E[Xk ] = 0 ↔ lim supk→∞ Sk = ∞ and lim infk→∞ Sk = −∞ µ-a.e.

E[Xk ] < 0 ↔ limk→∞ Sk = −∞ µ-a.e.

E[Xk ] > 0 ↔ limk→∞ Sk = ∞ µ-a.e.

Our Xks have expectation 0, so the S3ks will oscillate.
Hence, logwk oscillates ⇒ wk oscillates.
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Expectation computation


−1 : x3k−2x3k−1x3k = 001, q−1

0 : 000, 101, 101, q0

1 : 010, 100, 111, q1

2 : 110, q2

E[Xk ] = −q−1 + q1 + 2q2 = − 8

27
+

6

27
+ 2

1

27
= 0
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Example 1

For n = 0 mod 3, let

µn(0) =
1

3
, µn(1) =

2

3

and for n = 1, 2 mod 3, let

µn(0) =
2

3
, µn(1) =

1

3
.

Then by the Chung-Fuchs Theorem, the cocycle wx(τk(x)) of µ will
oscillate µ-a.e.
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Questions

Will the cocycle oscillate when...

µ is defined analogously to the above example, but with period > 3?

µ is an arbitrary periodic measure?
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Examples 2 to ∞

We can generalize the above example to obtain a family of periodic
measures, all of which have oscillating cocycles.
For a fixed m > 2, define µ as follows:
If n ≡ 0 mod m, then

µn(0) =
1

m
, µn(1) =

m − 1

m

If n ≡ 1, ...,m − 1 mod m, then

µn(0) =
m − 1

m
, µn(1) =

1

m
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Examples 2 to ∞ cont’d

Let Pk be the contribution of xk to the cocycle:

Pk =


1

m−1 , xk = 1 and k ≡m 0

m − 1, xk = 1 and k ≡m 1, 2, ...,m − 1

1 if xk = 0

Let
Sk :=

∑
i≤k

logm−1 Pi , then Sk ∈ Z.
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Examples 2 to ∞ cont’d

Let
Xk := Smk − Sm(k−1).

Then
Xk ∈ {−1, 0, 1, ...,m − 1}.

Since the marginal measures are periodic with period m, the Xks are IID,
so (Smk)k≥1 is a random walk.
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Examples 2 to ∞ cont’d

We now want to compute

E[Xk ] = −q−1 + q1 + 2q2 + ...+ (m − 1)qm−1.

First, notice that Xk = −1 if and only if

xmk = 1 and xmk+1 = ... = xmk+m−1 = 0,

so

q−1 = (
m − 1

m
)m.

Continue to get:

qi =

(
m

i + 1

)
(
1

m
)i+1(

m − 1

m
)m−i−1.
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Examples 2 to ∞ cont’d

So

E[Xk ] =
m∑
j=0

(j − 1)

(
m
j

)
(
1

m
)j(

m − 1

m
)m−j

=
m∑
j=0

j

(
m
j

)
(
1

m
)j(

m − 1

m
)m−j −

m∑
j=0

(
m
j

)
(
1

m
)j(

m − 1

m
)m−j

= 1− (
1

m
+

m − 1

m
)m = 0

by the binomial theorem.
So by the Chung-Fuchs Theorem, for all m ≥ 3, the product measure µ
will have a cocycle with the desired oscillatory behavior µ-a.e.
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Classifying Cocycles of Periodic Measures

We can always classify the limit behavior of the cocycle of a periodic
measure µ, using the Chung-Fuchs Theorem:

Theorem (Chung, Fuchs 1951)

For a random walk (Sk) on R with Xi that are iid and bounded,

E[Xk ] = 0 ↔ lim supk→∞ Sk = ∞ and lim infk→∞ Sk = −∞ µ-a.e.

E[Xk ] < 0 ↔ limk→∞ Sk = −∞ µ-a.e.

E[Xk ] > 0 ↔ limk→∞ Sk = ∞ µ-a.e.
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Classifying Cocycles of Periodic Measures cont’d

Let µ be an arbitrary measure with periodic marginals of period T > 2.
We construct a random walk in a completely analogous way to the
previous examples:

Sk :=
∑
i≤k

logPi and Xk := STk − ST (k−1)

for k > 0. Then

lim
k→∞

wk(x)


oscillates, E[X1] = 0

= 0, E[X1] < 0

= ∞, E[X1] > 0
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A nonsummable example

Another question was whether the cocycle ever goes to zero, but in a
nonsummable way.

We construct a product measure where this will occur. To do so, first let
(nk) be a sequence defined as n0 = 0 and nk+1 = nk + 2k

∑
i≤k i .

We define our marginal measures as:{
n ∈ (nk) : µn(0) =

1
2k+1

, µn(1) =
2k

2k+1

n /∈ (nk) : µn(0) = µn(1) =
1
2
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Nonsummable cont.

Now, letting mk =
∑

i≤k i , we let

Ek := {x ∈ 2N : x has at most mk 1s between indices nk and nk+1}.

Notice that if the sequence wx(τ(x)) is summable, then x ∈ Ek for
infinitely many k .

We can show that µ(Ek) ≤ 1
2k
, so by Borel-Cantelli, the set of all x whose

cocycle is summable lies in a null set, hence the cocycle is nonsummable
almost everywhere.
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Bound calculation

µ(Ek) =
1

22
kmk

2mk∑
i=0

(
2kmk

i

)
≤ 1

22
kmk

2mk∑
i=1

2ikmk

i !

≤ 1

22
kmk

2mk22
mk kmk = 2mk+2mk kmk−2kmk

≤ 2−k
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